

POWER Sources

Journal of Power Sources 55 (1995) 101-106

Short Communication

Mechanism of early capacity loss of Ti₂Ni hydrogen-storage alloy electrode

B. Luan, N. Cui, H. Zhao, H.K. Liu, S.X. Dou

Centre for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia

Received 8 August 1994; accepted 7 November 1994

Abstract

The mechanism underlying the rapid, early, capacity loss of titanium-based (Ti_2Ni) hydrogen-storage alloys is examined via X-ray diffraction analysis. The formation and accumulation of $Ti_2NiH_{0.5}$, a hydride phase that cannot be reversibly charged/discharged according to the experimental results, is proposed as a dominant cause of the early capacity loss of such electrodes.

Keywords: Electrodes; Hydrogen-storage alloy; Titanium; Nickel

1. Introduction

Oxidation and disintegration are believed to be prominent factors that are associated with the capacity loss of hydrogen-storage alloys when subjected to charge/ discharge cycles [1-4]. An interesting phenomenon reported previously [5] is the overlap in the first two cycles of the discharge curves of electrodes that are fabricated from uncoated Ti₂Ni alloy powder and Ti₂Ni powder coated at room temperature and at 80 °C (Fig. 1). This indicates the presence of a further contributing factor to the capacity loss that occurs during the early charge/discharge cycles of Ti₂Ni hydrogen-storage alloys. As is well known, four hydride phases of Ti₂Ni alloys exist, namely: Ti₂NiH_{0.5}, Ti₂NiH, Ti₂NiH₂, and Ti₂NiH_{2.5}. The Ti₂NiH_{2.5} alloy has the highest hydrogen-storage capacity while the Ti₂NiH_{0.5} alloy has the lowest. Furthermore, the Ti₂NiH_{0.5} hydride phase was found in the spent Ti₂Ni electrode in the previous work [5]. Consequently, the formation and accumulation of $Ti_2NiH_{0.5}$ during the charge/discharge process may be another factor that is linked directly with capacity loss, as was hitherto assumed to be the case [5]. To confirm this, an X-ray diffraction (XRD) technique was used to analyse systematically the phases that are formed at each stage during the first two charge/discharge cycles.

0378-7753/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0378-7753(94)02162-V

Fig. 1. Capacity decay curves of (×) uncoated Ti_2Ni electrode, (\bigcirc) high temperature powder-coated Ti_2Ni electrode, and (\diamondsuit) room temperature powder-coated Ti_2Ni electrode.

2. Experimental

 Ti_2Ni alloy was made using an arc furnace under argon protection. All materials used were provided by the Aldrich Chemical Company Inc. The ingot obtained was crushed and ground into a powder of below 100 mesh. One gram of the powder was mixed with a poly-(vinyl alcohol) solution at the ratio of 10:1 and was then casted on to a foam nickel sheet of 2.0 cm×

Fig. 2. Experimental procedure.

2.0 cm \times 0.2 cm. The sheet, when dry, was then pressed at a pressure of 15 kN/cm² to form a hydrogen-storage electrode. The electrode was now ready for charge/ discharge cycling and XRD analysis.

The electrode was both charged (to gassing voltage) and deep-discharged (to -0.20 V versus Hg/HgO reference electrode) galvanostatically at a current density of 20 mA/cm² in a 6 M KOH. At each stage of being charged and discharged, the electrode was analysed by XRD and performed on a Philips PW 1010 diffractometer. The procedure was then repeated to obtain XRD analysis for a second charge/discharge cycle.

The overall experimental procedure is illustrated briefly in Fig. 2.

3. Results and discussion

XRD patterns are shown in Fig. 3 through Fig. 6. The corresponding XRD data are summarized in Table 1 through Table 5. The results are summarized as follows:

(i) The original electrode fabricated from the hydrogen-storage alloy is composed of Ti_2Ni , as indicated in previous work [5]; see Fig. 3.

(ii) After the first charge, there is clear evidence of the development of two phases, Ti_2NiH and $Ti_2NiH_{0.5}$; see Fig. 4.

(iii) $Ti_2NiH_{0.5}$ and Ti_2Ni co-exist after the first discharge; see Fig. 5.

(iv) Three phases, i.e., $Ti_2NiH_{0.5}$, Ti_2NiH and Ti_2Ni , co-exist after the second charge; see Fig. 6.

(v) $Ti_2NiH_{0.5}$ exists together with a new phase, $(Ti_2Ni)_2O$, after the second discharge; see Fig. 7.

In summary, the findings show that two titanium nickel hydride phases exist when Ti_2Ni is charged, namely, $Ti_2NiH_{0.5}$ and Ti_2NiH . After being discharged (see Fig. 5), Ti_2NiH is transformed reversibly into Ti_2Ni but the $Ti_2NiH_{0.5}$ hydride phase still remains. This indicates that $Ti_2NiH_{0.5}$ cannot be charged and discharged reversibly and, therefore, does not contribute to the discharge capacity of the electrode. It would appear that the part of the $Ti_2NiH_{0.5}$ phase loses its reversible charge/discharge performance.

Fig. 3. X-ray diffraction pattern for Ti₂Ni electrode before charge/discharge cycling.

Table	1										
X-ray	diffraction	data	for	Ti ₂ Ni	electrode	before	cycling	(corresponding	to	Fig.	3)

	Ti ₂ Ni												
d-Space (measured)	3.26	2.59	2.30	2.17	2.00	1.89	1.47	1.33	1.31	1.24	1.14	1.09	
<i>d</i> -Space (ASTM standard)	3.26	2.59	2.30	2.17	1.99	1.88	1.47	1.33	1.30	1.24	1.13	1.09	
(hkl)	222	331	422	511	440	600	731	660	751	911	933	951	

Table 2

X-ray diffraction data for $Ti_2NiH_{0.5}$ and Ti_2NiH electrodes after the first charge (corresponding to Fig. 4)

	Ti₂NiH	0.5				Ti ₂ NiH						
d-Space	2.34	2.21	2.03	1.35	1.12	2.71	2.40	2.26	2.08	1.95	1.37	
(measured) d-Space	2.34	2.21	2.03	1.35	1.13	2.71	2.41	2.27	2.07	1.96	1.37	
(ASTM standard) (hkl)	422	333	440	660	862	331	422	333	440	600	555	

Table	3
-------	---

X-ray diffraction data for Ti_2Ni and $Ti_2NiH_{0.5}$ electrodes after the first discharge (corresponding to Fig. 5)

	Ti ₂ Ni				Ti ₂ NiH _{0.5}							
d-Space (measured)	3.26	2.59	2.30	2.17	2.04	1.91	1.47	2.35	2.22	2.04	1.33	1.13
<i>d</i> -Space (ASTM standard)	3.26	2.59	2.30	2.17	2.03	1.91	1.47	2.34	2.21	2.03	1.33	1.13
(hkl)	222	331	422	511	440	600	731	422	333	440	555	862

Table 4

X-ray diffraction data for TiNiH_{0.5}, Ti₂NiH and Ti₂Ni electrodes after the second charge (corresponding to Fig. 6)

	Ti ₂ NiH _{0.5}								Ti ₂ NiH			Ti ₂ Ni			
d-Space (measured)	2.34	2.22	2.03	1.91	1.66	1.33	1.13	2.28	2.07	1.24	2.31	2.18	2.00	1.91	
<i>d</i> -Space (ASTM standard)	2.34	2.21	2.04	1.91	1.66	1.33	1.13	2.27	2.07	1.24	2.30	2.17	1.99	1.91	
(hkl)	422	333	440	600	444	555	862	333	440	931	422	511	440	531	

Table 5

X-ray diffraction data for $Ti_2NiH_{0.5}$ and $(TiNi)_2O$ electrodes after the second discharge (corresponding to Fig. 7)

	Ti₂NiH	lo.5		, <u>,</u> ,,		(Ti ₂ Ni) ₂ O						
d-Space (measured)	2.63	2.33	2.22	2.03	1.91	1.33	2.31	2.18	2.00	1.41	1.39	1.34
<i>d</i> -Space (ASTM standard)	2.63	2.34	2.21	2.03	1.91	1.33	2.31	2.18	2.00	1.41	1.38	1.34
(hkl)	331	422	333	440	600	555	422	333	440	800	733	660

When the electrode undergoes a second charge, the $Ti_2NiH_{0.5}$ phase is still present. It is reasonable that an additional amount of $Ti_2NiH_{0.5}$ hydride phase is formed from Ti_2Ni , as can be qualitatively shown by comparing Fig. 6 with Fig. 4. This reaction during the second charging process thus gives rise to an accu-

mulation of the $Ti_2NiH_{0.5}$ hydride phase. The Ti_2NiH phase is again formed from the hydriding of Ti_2Ni during the second charging process. This time, however, some Ti_2Ni remains and may be attributed to the now partly disintegrated Ti_2Ni powder losing its hydrogenstorage ability and thus becoming incapable of being

Fig. 4. X-ray diffraction pattern for Ti_2Ni electrodes after first charge.

Fig. 5. X-ray diffraction pattern for Ti₂Ni electrodes after first discharge.

Fig. 6. X-ray diffraction pattern for $\mathrm{Ti}_2\mathrm{Ni}$ electrodes after second charge.

Fig. 7. X-ray diffraction pattern for Ti_2Ni electrodes after second discharge.

Fig. 8. Schematic of capacity decay in Ti₂Ni hydrogen-storage alloys.

hydrided during the second charging process [5]. After the second discharge (see Fig. 7), it can be seen that the $Ti_2NiH_{0.5}$ phase is still present and that the Ti_2Ni (both disintegrated and dehydrided from Ti_2NiH) has been oxidized to become $(Ti_2Ni)_2O$. This is consistent with the capacity of the third discharge (see Fig. 4) which drops to an almost negligible level.

The results and discussions above clearly indicate that the produced $Ti_2NiH_{0.5}$ hydride phase cannot be reversibly charged and discharged and, thus, will accumulate inside the hydrogen-storage alloy to cause significant capacity loss during the early charge/discharge cycles. The capacity decay process of Ti_2Ni hydrogen-storage alloys is illustrated schematically in Fig. 8.

The mechanism outlined above facilitates the explanation of the capacity decay curves of the electrodes fabricated from uncoated Ti₂Ni alloy powder and Ti₂Ni alloy powder coated at high temperature (80 °C) and at room temperature (see Fig. 1). In the first two cycles, the formation and accumulation of the $Ti_2NiH_{0.5}$ hydride phase determines the capacity loss. This is because the process is irreversible and thus makes no contribution to the discharge capacity of the Ti₂Ni hydrogen-storage alloy. Furthermore, the formation and accumulation of the Ti₂NiH_{0.5} hydride phase is internal and, therefore, is independent of surface micro-encapsulations. Accordingly, the three curves overlap each other during the first two cycles, as shown in Fig. 1. After this period, formation of the Ti₂NiH_{0.5} hydride phase is possibly saturated and oxidation of the Ti₂Ni phase dominates the capacity decay process, to form $(Ti_2Ni)_2O$ on the powder surface. Because micro-encapsulation greatly increases the oxidation resistance of the alloy powder, the micro-encapsulated alloy maintains its capacity to a greater degree than the uncoated alloy, as indicated in Fig. 1. The fact that the capacity decay of the low-temperature micro-encapsulated alloy is significantly slower than that of the high-temperature counterpart might be due to the former alloy having a more condensed coating with lower porosity and, consequently, better protection against oxidation [5].

The $Ti_2NiH_{0.5}$ hydride phase occupies some of the Ti_2Ni powder, but makes no contribution towards the discharge capacity of the alloy. To increase the capacity and retard the capacity loss of Ti_2Ni hydrogen-storage alloys, further research aimed at eliminating or reducing the formation and accumulation of the $Ti_2NiH_{0.5}$ hydride phase during charge cycles is required.

4. Conclusions

1. The formation of $Ti_2NiH_{0.5}$ hydride phase is observed inside Ti_2Ni hydrogen-storage alloys during early cycles. Once formed, the compound cannot be reversibly charged and discharged. Therefore, it provides no contribution to the discharge capacity of Ti_2Ni electrodes.

2. $Ti_2NiH_{0.5}$ formation and accumulation dominates the capacity loss during early cycles, while oxidation and disintegration of the Ti_2Ni powder become the determining factors during later cycles.

3. In order to increase the capacity and retard the capacity loss of Ti_2Ni hydrogen-storage alloys, the formation and accumulation of $Ti_2NiH_{0.5}$ hydride during charge cycles must be restricted or prevented.

Acknowledgements

The authors are grateful for the assistance of Mr Peter Bain.

References

- [1] T. Sakai et al., J. Electrochem. Soc., 134 (1987) 558-562.
- [2] A.I. Shilow, M.E. Kost and N.T. Kuznetsov, J. Less-Common Met., 144 (1988) 23-30.
- [3] T.L. Markin and R.M. Dell, J. Electroanal. Chem., 118 (1981) 211.
- [4] J.J.G. Willems and K.H.J. Buschow, J. Less-Common Met., 129 (1987) 13-30.
- [5] B. Luan, N. Cui, H.K. Liu, H. Zhao and S.X. Dou, J. Power Sources, 52 (1994) 295.